We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects.
View Article and Find Full Text PDFThe influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y.
View Article and Find Full Text PDFLaser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter.
View Article and Find Full Text PDFInteractions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet.
View Article and Find Full Text PDFBIOLOGICAL MOVEMENT GENERATION COMBINES THREE INTERESTING ASPECTS: its modular organization in movement primitives (MPs), its characteristics of stochastic optimality under perturbations, and its efficiency in terms of learning. A common approach to motor skill learning is to endow the primitives with dynamical systems. Here, the parameters of the primitive indirectly define the shape of a reference trajectory.
View Article and Find Full Text PDFSpacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust.
View Article and Find Full Text PDFHigh-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition.
View Article and Find Full Text PDFThe earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere.
View Article and Find Full Text PDFMeasurements of surface reflectance of permanently shadowed areas near Mercury's north pole reveal regions of anomalously dark and bright deposits at 1064-nanometer wavelength. These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice. Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice, whereas dark regions are consistent with a surface layer of complex organic material that likely overlies buried ice and provides thermal insulation.
View Article and Find Full Text PDFThermal models for the north polar region of Mercury, calculated from topographic measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice. MESSENGER measurements of near-infrared surface reflectance indicate bright surfaces in the coldest areas where water ice is predicted to be stable at the surface, and dark surfaces within and surrounding warmer areas where water ice is predicted to be stable only in the near subsurface. We propose that the dark surface layer is a sublimation lag deposit that may be rich in impact-derived organic material.
View Article and Find Full Text PDFOne key idea behind morphological computation is that many difficulties of a control problem can be absorbed by the morphology of a robot. The performance of the controlled system naturally depends on the control architecture and on the morphology of the robot. Because of this strong coupling, most of the impressive applications in morphological computation typically apply minimalistic control architectures.
View Article and Find Full Text PDFCurrently available influenza vaccines provide suboptimal protection. In order to improve the quality of protective immune responses elicited following vaccination, we developed an oil-in-water nanoemulsion (NE)-based adjuvant for an intranasally-delivered inactivated influenza vaccine. Using a prime-boost vaccination regimen, we show that intranasal vaccines containing the W(80)5EC NE elicited higher titers of serum hemagglutination inhibiting (HAI) antibody and influenza-specific IgG and IgA titers compared to vaccines that did not contain the NE.
View Article and Find Full Text PDFObjectives: To analyze the impact of functional magnetic resonance urography (fMRU) on the therapeutic management in infants with complex obstructive uropathy (OU) compared to the conventional diagnostic algorithm [CDA, ultrasound, radioisotope nephrography (RN)].
Methods: Retrospective analysis on 10 consecutive infants [female, n=3; male, n=7; age, 10.7 (2-17) months] with OU.
Avian A/H5N1 influenza viruses pose a pandemic threat. As few as five amino acid substitutions, or four with reassortment, might be sufficient for mammal-to-mammal transmission through respiratory droplets. From surveillance data, we found that two of these substitutions are common in A/H5N1 viruses, and thus, some viruses might require only three additional substitutions to become transmissible via respiratory droplets between mammals.
View Article and Find Full Text PDFHighly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals.
View Article and Find Full Text PDFShackleton crater is nearly coincident with the Moon's south pole. Its interior receives almost no direct sunlight and is a perennial cold trap, making Shackleton a promising candidate location in which to seek sequestered volatiles. However, previous orbital and Earth-based radar mapping and orbital optical imaging have yielded conflicting interpretations about the existence of volatiles.
View Article and Find Full Text PDFThe influenza virus RNA polymerase complex is a heterotrimer composed of the PB1, PB2, and PA subunits. PB1, the catalytic core and structural backbone of the polymerase, possesses four highly conserved amino acid motifs that are present among all viral RNA-dependent RNA polymerases. A previous study demonstrated the importance of several of these conserved amino acids in PB1 for influenza polymerase activity through mutational analysis.
View Article and Find Full Text PDFWe investigated whether an athlete's self-chosen nutrition strategy (A), compared with a scientifically determined one (S), led to an improved endurance performance in a laboratory time trial after an endurance exercise. S consisted of about 1000 mL·h(-1) fluid, in portions of 250 mL every 15 min, 0.5 g sodium·L(-1), 60 g glucose·h(-1), 30 g fructose·h(-1), and 5 mg caffeine·kg body mass(-1).
View Article and Find Full Text PDFThe ability to modify influenza viruses at will has revolutionized influenza research. Reverse genetics has been used to generate mutant or reassortant influenza viruses to assess their replication, virulence, pathogenicity, host range, and transmissibility. Moreover, this technology is now being used to generate approved influenza virus vaccines and develop novel vaccines to combat seasonal and (future) pandemic influenza viruses.
View Article and Find Full Text PDFWe provide a brief introduction into the genome organization, life cycle, pathogenicity, and host range of influenza A viruses. We also briefly summarize influenza pandemics and currently available measures to control influenza virus outbreaks, including vaccines and antiviral compounds to influenza viruses.
View Article and Find Full Text PDFLaser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains.
View Article and Find Full Text PDFRadio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins.
View Article and Find Full Text PDFThe identification of host factors involved in virus replication is important to understand virus life cycles better. Accordingly, we sought host factors that interact with the influenza viral nonstructural protein 2 by using coimmunoprecipitation followed by mass spectrometry. Among proteins associating with nonstructural protein 2, we focused on the β subunit of the F1Fo-ATPase, which received a high probability score in our mass spectrometry analysis.
View Article and Find Full Text PDF