Publications by authors named "NE Sluchanko"

A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn−Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures 1.

View Article and Find Full Text PDF

Accurate low temperature charge transport measurements in combination with high-precision x-ray diffraction experiments have allowed detection of the symmetry lowering in the single domain TmYbB crystals that belong to the family of dodecaborides with metal-insulator transition. Based on the fine structure analysis we discover the formation of dynamic charge stripes within the semiconducting matrix of TmYbB. The charge dynamics in these conducting nano-size channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.

View Article and Find Full Text PDF

High-quality single crystals of LuB are grown using the induction zone melting method. The x-ray data are collected at temperatures 293, 135, 95, 50 K. The crystal structure of LuB can be refined with record low R-factor in the cubic Fm [Formula: see text] m symmetry group despite reiterated observations of the cubic symmetry distortions both in the unit-cell values and in the physical properties.

View Article and Find Full Text PDF

Introducing of topological insulator concept for fluctuating valence compound - samarium hexaboride - has recently initiated a new round of studies aimed to clarify the nature of the ground state in this extraordinary system with strong electron correlations. Here we discuss the data of magnetic resonance in the pristine single crystals of SmB measured in 60 GHz cavity experiments at temperatures 1.8-300 K.

View Article and Find Full Text PDF

Spatial anisotropy generated spontaneously in the translationally invariant metallic phase, i.e. electron nematic effect, addresses a great challenge for both experimentalists and theoreticians.

View Article and Find Full Text PDF

Electron spin resonance (ESR) in strongly correlated metals is an exciting phenomenon, as strong spin fluctuations in this class of materials broaden extremely the absorption line below the detection limit. In this respect, ESR observation in CeB provides a unique chance to inspect Ce magnetic state in the antiferroquadrupole (AFQ) phase. We apply the original high frequency (60 GHz) experimental technique to extract the temperature and angular dependences of g-factor, line width and oscillating magnetization.

View Article and Find Full Text PDF

Intrinsic phase coherence between individual topologically stable knots in spin arrangement - skyrmions - is known to induce the crystalline-like structure in the A-phase of non-centrosymmetric MnSi with chiral spin-orbit interaction. Here we report the experimental evidence for two types of the skyrmion lattice (SL) inside the A-phase of MnSi, which are distinguished by different coupling to the anisotropic magnetic interactions. The transition between these SLs is shown to induce a change in magnetic scattering between isotropic MR discovered in the area inside the A-phase (the A-phase core) and anisotropic MR found on the border of the A-phase.

View Article and Find Full Text PDF

Resonant magnetic excitations are recognised as hallmarks of unconventional superconductivity in copper oxides, iron pnictides and heavy-fermion compounds. Model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms of their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting antiferromagnetic heavy-fermion metal CeB(6).

View Article and Find Full Text PDF