Publications by authors named "NE Massa"

Two polymorphs of tetrathiafulvalene chloranilic acid (TTF-CAH) have been synthesized by mechanochemistry. The previously known "ionic" polymorph (form I) was prepared by liquid-assisted grinding (LAG) using various highly polar solvents as well as protic but moderately polar solvents, such as alcohols of one to four carbon atoms. A new TTF-CAH polymorph (form II) was obtained by LAG and slurry mechanochemistry using aprotic, low-polarity solvents, as well as nonpolar solvents and neat grinding.

View Article and Find Full Text PDF

We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (D(4)(6h)) (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric-ferroelectric polar phase reaching the ferroelectric onset at ~700 K.

View Article and Find Full Text PDF

We report on the far- and mid-infrared reflectivity of NdMnO3 from 4 to 300 K. Two main features are distinguished in the infrared spectra: active phonons in agreement with expectations for the orthorhombic [Formula: see text]-Pbnm (Z = 4) space group remaining constant down to 4 K and a well defined collective excitation in the THz region due to eg electrons in a d-orbital fluctuating environment. We trace its origin to the NdMnO3 high-temperature orbital disordered intermediate phase not being totally dynamically quenched at lower temperatures.

View Article and Find Full Text PDF

We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number of infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D(2h)(16)-Pbnm (Z = 4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O.

View Article and Find Full Text PDF

We report on electronic collective excitations in RMn(2)O(5) (R =Pr, Sm, Gd, Tb) showing condensation starting at and below ~T(N) ~T(C)~ 40-50 K. Their origin is understood as partial delocalized e(g) electron orbitals in the Jahn-Teller distortion of the pyramid dimer with strong hybridized Mn(3+)-O bonds. Our local probes, Raman, infrared, and x-ray absorption, back the conclusion that there is no structural phase transition at T(N)~T(C).

View Article and Find Full Text PDF

An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure.

View Article and Find Full Text PDF

Mid-, far-infrared and Raman vibrational spectra of 2-acetylphenyl-2-naphthoate have been measured at room and low temperatures. The molecule was also analyzed by means of ab initio calculations. The conformational space has been scanned using molecular dynamics and complemented with functional density calculations that optimize the geometry of the lowest energy conformers 2-acetylphenyl-2-naphthoate as obtained in the simulations.

View Article and Find Full Text PDF