We experimentally study 2p photoionization of neon dimers (Ne_{2}) at a photon energy of hν=36.56 eV. By postselection of ionization events which lead to a dissociation into Ne^{+}+Ne we obtain the photoelectron angular emission distribution in the molecular frame.
View Article and Find Full Text PDFA general equation for the three-dimensional angular distribution of photoelectrons ejected from fixed-in-space molecules of any symmetry by light of arbitrary polarization is derived. The state of the light polarization is described by the Stokes parameters. The equation is also valid for photoionization of polarized atoms and aligned or oriented rotating molecules.
View Article and Find Full Text PDFAlthough valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.
View Article and Find Full Text PDFThe wave nature of particles is rarely observed, in part because of their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, the particles couple to their environment (for example, by gravity, Coulomb interaction, or thermal radiation). These couplings shift the wave phases, often in an uncontrolled way, and the resulting decoherence, or loss of phase integrity, is thought to be a main cause of the transition from quantum to classical behavior.
View Article and Find Full Text PDFDiffraction of a low energy (<4 eV) carbon-K-photoelectron wave that is created inside a CO molecule by absorption of a circularly polarized photon is investigated. The measurements resolve the vibrational states of the K-shell ionized CO+ molecule and display the photoelectron diffraction patterns in the molecular frame. These show significant variation for the different vibrational states.
View Article and Find Full Text PDFAngular distributions of C 1s photoelectrons from fixed-in-space CO molecules have been measured with vibrational resolution. A strong dependence of the angular distributions on the vibrational states of the residual molecular ion has been found for the first time in the region of the shape resonance. Calculations in the relaxed core Hartree-Fock approximation have reproduced the angular distributions fairly well in the general shapes of the angular distributions due to the correct description of nuclear motion as an average of the internuclear-distance-dependent dipole amplitudes.
View Article and Find Full Text PDFWe have measured the angular distributions of 1s photoelectrons excited by circularly and linearly polarized light from fixed-in-space CO and N2 molecules, in the vicinity of their shape resonances. A strong circular dichroism, i.e.
View Article and Find Full Text PDFAngular distributions of photoelectrons from a 2sigma(g) shell of fixed-in-space N2 molecules have been measured for left- and right-elliptically polarized and for linearly polarized light at several photon energies in the region of sigma(*) shape resonance. That allowed the determination of a set of dipole matrix elements and phase shift differences characterizing the process. These data clearly show the enhancement of the fsigma(u) partial cross section in the resonance simultaneously with an abrupt increase of the corresponding phase shift by pi, which is the first experimental demonstration of the nature of the sigma(*) shape resonance in homonuclear diatomic molecules.
View Article and Find Full Text PDFThe linear magnetic dichroism in the angular distribution of Tl 5d and 6p photoelectrons and their dynamical spin polarization have been measured between hnu = 30 and 50 eV. In contrast to the Xe 5p photoionization at the 4d threshold, our results show that above the Tl 5d threshold strong interchannel coupling effects induce a sudden increase in the asymptotic phase difference of the s and d waves for the Tl 6p ionization. This shows that the valence excitation is different for resonant (Xe 4d) and nonresonant (Tl 5d) excitation from subvalence shells.
View Article and Find Full Text PDFIt is demonstrated theoretically in the random phase approximation (RPA) that due to the intershell many-electron correlations the sigma(*) shape resonance in the photoionization of K shells of the N2 molecule appears not only in the 1sigma(g)-->varepsilonsigma(u) channel as it was believed earlier on the basis of single particle calculations, but in both 1sigma(g)-->varepsilonsigma(u) and 1sigma(u)-->varepsilonsigma(g) channels. As a confirmation of this phenomenon we show that the experimental angular distributions of photoelectrons ejected from fixed-in-space N2 molecules can be reproduced theoretically only after taking into account many-electron correlations.
View Article and Find Full Text PDFThe dynamical information (ten dipole matrix elements and eight phase differences) has been deduced from the measured angular distributions of photoelectrons from O K shell of oriented CO molecules near the ionization threshold in the region of a sigma(*) shape resonance. Light polarization parallel and perpendicular to the molecular axis has been used. An important contribution of six lsigma partial waves with 0=l=5 to the sigma(*) shape resonance is demonstrated.
View Article and Find Full Text PDFPhys Rev B Condens Matter
August 1995
Phys Rev B Condens Matter
November 1994