Publications by authors named "N. Prevarskaya"

Aim: Inositol 1,4,5-trisphosphate receptor (IPR) is a ubiquitous calcium (Ca) channel involved in the regulation of cellular fate and motility. Its modulation by anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) plays an important role in cancer progression. Disrupting this interaction could overcome apoptosis avoidance, one of the hallmarks of cancer, and is, thus, of great interest.

View Article and Find Full Text PDF

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts.

View Article and Find Full Text PDF

Urinary incontinence of idiopathic nature is a common complication of bladder cancer, yet, the mechanisms underlying changes in bladder contractility associated with cancer are not known. Here by using tensiometry on detrusor smooth muscle (DSM) strips from normal rats and rats with bladder cancer induced by known urothelial carcinogen, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), we show that bladder cancer is associated with considerable changes in DSM contractility. These changes include: (1) decrease in the amplitude and frequency of spontaneous contractions, consistent with the decline of luminal pressures during filling, and detrusor underactivity; (2) diminution of parasympathetic DSM stimulation mainly at the expense of m-cholinergic excitatory transmission, suggestive of difficulty in bladder emptying and weakening of urine stream; (3) strengthening of TRPV1-dependent afferent limb of micturition reflex and TRPV1-mediated local contractility, promoting urge incontinence; (4) attenuation of stretch-dependent, TRPV4-mediated spontaneous contractility leading to overflow incontinence.

View Article and Find Full Text PDF

In prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration.

View Article and Find Full Text PDF

Breakdown of the blood-retinal barrier (BRB), as occurs in diabetic retinopathy and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing vision loss. Vasoinhibins are N-terminal fragments of prolactin that prevent BRB breakdown during diabetes. They modulate the expression of some transient receptor potential (TRP) family members, yet their role in regulating the TRP vanilloid subtype 4 (TRPV4) remains unknown.

View Article and Find Full Text PDF

Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases.

View Article and Find Full Text PDF

Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors.

View Article and Find Full Text PDF
Article Synopsis
  • Male mammals usually keep their testicles outside their bodies, which makes them cooler than the rest of their body.
  • This study looked at a special mouse model that helped scientists discover how a cold sensor called TRPM8 affects the survival of germ cells (which help make sperm) when it gets cold.
  • They found that when TRPM8 is working, it helps protect these germ cells from dying due to the cold, but if TRPM8 is not working, more germ cells die, especially when it gets really cold.
View Article and Find Full Text PDF

To achieve and maintain skin architecture and homeostasis, keratinocytes must intricately balance growth, differentiation, and polarized motility known to be governed by calcium. Orai1 is a pore subunit of a store-operated Ca(2+) channel that is a major molecular counterpart for Ca(2+) influx in nonexcitable cells. To elucidate the physiological significance of Orai1 in skin, we studied its functions in epidermis of mice, with targeted disruption of the orai1 gene, human skin sections, and primary keratinocytes.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels couple various environmental factors to changes in membrane potential, calcium influx, and cell signaling. They also integrate multiple stimuli through their typically polymodal activation. Thus, although the TRPM8 channel has been extensively investigated as the major neuronal cold sensor, it is also regulated by various chemicals, as well as by several short channel isoforms.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown.

View Article and Find Full Text PDF

It has previously been suggested that volume-regulated anion channels (VRACs) and store-operated channels (SOCs) interact with each other according to their expected colocalization in the plasma membrane of LNCaP cells. In order to study interactions between these two channels, we used 2-aminoethoxydiphenyl borate (2-APB) as a regular SOC inhibitor. Surprisingly 2-APB reduced VRAC activity in a dose-dependent manner (IC(50)=122.

View Article and Find Full Text PDF

Ca(2+) chelating agents are widely used in biological research for Ca(2+) buffering. Here we report that BAPTA, EDTA and HEDTA produce fast, reversible, voltage-dependent inhibition of swelling-activated Cl(-) current (I(Cl,swell)) in LNCaP prostate cancer epithelial cells that is unrelated to their Ca(2+) binding. BAPTA was the most effective (maximal blockade 67%, IC(50)=70 microM, at +100 mV) followed by EDTA and HEDTA.

View Article and Find Full Text PDF

MCF-7 cells express voltage-activated K+ channels. In the present study, we used the patch-clamp and RT-PCR techniques to investigate the involvement of these channels during the cell cycle progression. The outward rectifier current (IK) recorded during depolarization was almost completely suppressed by the classical K+ channel blocker tetraethylammonium (TEA) in MCF-7 cells.

View Article and Find Full Text PDF

The mechanisms of verapamil and tetraethylammonium (TEA) inhibition of voltage-gated K+ channels in LNCaP human prostate cancer cells were studied in whole-cell and outside/inside-out patch-clamp configurations. Rapidly activating outward K+ currents (I(K)) exhibited neither C-type, nor rapid (human ether á go-go-related gene-type) inactivation. With 2 mM [Mg(2+)](o), I(K) activation kinetics was independent of holding potential, suggesting the absence of ether á go-go-type K+ channels.

View Article and Find Full Text PDF

Xenopus oocytes were injected with total RNA from chicory leaf tissues and then examined by the voltage-clamp technique. A double-step voltage protocol was used, with an initial hyperpolarization step from the holding potential of -35 to -140 mV followed by a second depolarization step to +60 mV. Two different outward currents were observed, one noninactivating (Ini), and one inactivating (Ii).

View Article and Find Full Text PDF

In pituitary cells, voltage-dependent Ca2+ channels play an important role in such physiological processes as exocytosis, secretion, the cell cycle, and proliferation. Thus mechanisms that modulate voltage-dependent Ca2+ channel activity participate indirectly in regulating intracellular Ca2+ concentration. We have shown a new modulating mechanism for voltage-dependent Ca2+ channels by demonstrating that Ca2+ influx is influenced by Cl-.

View Article and Find Full Text PDF