Background: During the day-night cycle, gravity and applied stress to the body mass and spine causes a decrease in body height, which is restored overnight. This diurnal spine length variation has not yet been quantified during radiotherapy. Therefore, we aimed to quantify diurnal spine length variation on cone beam CTs (CBCTs) of pediatric patients (< 18 years) who underwent radiotherapy.
View Article and Find Full Text PDFClin Transl Radiat Oncol
January 2025
Purpose: The study assesses the clinical implementation of radiation therapist (RTT)-only Conebeam CT (CBCT)-guided online adaptive focal radiotherapy (oART) for bladder cancer, by describing the training program, analyzing the workflow and monitoring patient experience.
Materials And Methods: Bladder cancer patients underwent treatment (20 sessions) on a ring-based linac (Ethos, Varian, a Siemens Healthineers Company, USA). Commencing April 2021, 14 patients were treated by RTTs supervised by the Radiation Oncologist (RO) and Medical Physics Expert (MPE) in a multidisciplinary workflow.
Purpose: The aim was to assess the feasibility of online adaptive radiotherapy (oART) for bladder cancer using a focal boost by focusing on the quality of the online treatment plan and automatic target delineation, duration of the workflow and performance in the presence of fiducial markers for tumor bed localization.
Methods: Fifteen patients with muscle invasive bladder cancer received daily oART with Cone Beam CT (CBCT), artificial intelligence (AI)-assisted automatic delineation of the daily anatomy and online plan reoptimization. The bladder and pelvic lymph nodes received a total dose of 40 Gy in 20 fractions, the tumor received an additional simultaneously integrated boost (SIB) of 15 Gy.
Brachytherapy
March 2023
Purpose: This prospective study evaluates our first clinical experiences with the novel ``BRachytherapy via artificial Intelligent GOMEA-Heuristic based Treatment planning'' (BRIGHT) applied to high-dose-rate prostate brachytherapy.
Methods And Materials: Between March 2020 and October 2021, 14 prostate cancer patients were treated in our center with a 15Gy HDR-brachytherapy boost. BRIGHT was used for bi-objective treatment plan optimization and selection of the most desirable plans from a coverage-sparing trade-off curve.
Background: Online adaptive radiotherapy has the potential to reduce toxicity for patients treated for rectal cancer because smaller planning target volumes (PTV) margins around the entire clinical target volume (CTV) are required. The aim of this study is to describe the first clinical experience of a Conebeam CT (CBCT)-based online adaptive workflow for rectal cancer, evaluating timing of different steps in the workflow, plan quality, target coverage and patient compliance.
Methods: Twelve consecutive patients eligible for 5 × 5 Gy pre-operative radiotherapy were treated on a ring-based linear accelerator with a multidisciplinary team present at the treatment machine for each fraction.