Publications by authors named "N van Gils"

The most important reason for dismal outcomes in acute myeloid leukemia (AML) is the development of relapse. Leukemia stem cells (LSCs) are hypothesized to initiate relapse, and high CD34+CD38- LSC load is associated with poor prognosis. In 10% of AML patients, CD34 is not or is low expressed on the leukemic cells (<1%), and CD34+CD38- LSCs are absent.

View Article and Find Full Text PDF

We show in experiments that a long, underdense, relativistic proton bunch propagating in plasma undergoes the oblique instability, which we observe as filamentation. We determine a threshold value for the ratio between the bunch transverse size and plasma skin depth for the instability to occur. At the threshold, the outcome of the experiment alternates between filamentation and self-modulation instability (evidenced by longitudinal modulation into microbunches).

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) comprise hematological disorders that originate from the neoplastic transformation of hematopoietic stem cells (HSCs). However, discrimination between HSCs and their neoplastic counterparts in MDS-derived bone marrows (MDS-BMs) remains challenging. We hypothesized that in MDS patients immature CD34CD38 cells with aberrant expression of immunophenotypic markers reflect neoplastic stem cells and that their frequency predicts leukemic progression.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CBR) and cannabinoid receptor 2 (CBR) are G protein-coupled receptors (GPCRs) that activate a variety of pathways upon activation by (partial) agonists including the G protein pathway and the recruitment of β-arrestins. Differences in the activation level of these pathways lead to biased signaling. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CBR and CBR using the PathHunter assay.

View Article and Find Full Text PDF

Although chemotherapy induces complete remission in the majority of acute myeloid leukemia (AML) patients, many face a relapse. This relapse is caused by survival of chemotherapy-resistant leukemia (stem) cells (measurable residual disease; MRD). Here, we demonstrate that the anthracycline doxorubicin epigenetically reprograms leukemia cells by inducing histone 3 lysine 27 (H3K27) and H3K4 tri-methylation.

View Article and Find Full Text PDF