The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited.
View Article and Find Full Text PDFThe diverse and unpredictable structures of -GalNAc-type protein glycosylation present a challenge for its structural and functional characterization in a biological system. Porous graphitized carbon (PGC) liquid chromatography (LC) coupled to mass spectrometry (MS) has become one of the most powerful methods for the global analysis of glycans in complex biological samples, mainly due to the extensive chromatographic separation of (isomeric) glycan structures and the information delivered by collision induced fragmentation in negative mode MS for structural elucidation. However, current PGC-based methodologies fail to detect the smaller glycan species consisting of one or two monosaccharides, such as the Tn (single GalNAc) antigen, which is broadly implicated in cancer biology.
View Article and Find Full Text PDFBackground: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases.
View Article and Find Full Text PDFDue to the impact respiratory viruses have on human health, a lot of data has been collected and visualised in tools such as dashboards that provide retrospective insights into the course of an epidemic or pandemic. Two well-known respiratory viruses, influenza virus and SARS-CoV-2, are the causative agents of influenza and COVID-19, respectively. A scoping review was performed using Embase including data from January 2000 until April 2021 to identify individual and environmental health parameters that affect transmission of influenza virus and SARS-CoV-2, as well as disease severity (morbidity (hospitalisation) and mortality) of influenza and COVID-19.
View Article and Find Full Text PDF