Microbial communities of terrestrial mud volcanoes are involved in aerobic and anaerobic methane oxidation, but the biological mechanisms of these processes are still understudied. We have investigated the taxonomic composition, rates of methane oxidation, and metabolic potential of microbial communities in five mud volcanoes of the Taman Peninsula, Russia. Methane oxidation rates measured by the radiotracer technique varied from 2.
View Article and Find Full Text PDFThe process of anaerobic ammonium oxidation by nitrite (anammox) is a globally essential part of N cycle. To date, 8 Candidatus genera and more than 22 species of anammox bacteria have been discovered in various anthropogenic and natural habitats, including nitrogen-polluted aquifers. In this work, anammox bacteria were detected for the first time in the groundwater ecosystem with high anthropogenic nitrogen pollution (up to 1760 mg NO-N/L and 280 mg NH-N/L) and low year-round temperature (7-8 °C) in the zone of a uranium sludge repository.
View Article and Find Full Text PDFThe key microbial group involved in anaerobic methane oxidation is anaerobic methanotrophic archaea (ANME). From a terrestrial mud volcano, we enriched a microbial community containing ANME-2a, using methane as an electron donor, Fe(III) oxide (ferrihydrite) as an electron acceptor, and anthraquinone-2,6-disulfonate as an electron shuttle. Ferrihydrite reduction led to the formation of a black, highly magnetic precipitate.
View Article and Find Full Text PDFThe article presents the results of studying the biodiversity and biotechnological potential of halophilic microorganisms from the thermal highly mineralized Berikey Lake, the salty Lake Tarumovskoye and saline soils of the Peri-Caspian Lowland (Republic of Daghestan). Denitrifying halophilic bacteria of the genus Halomonas and Virgibacillus were identified using microbiological methods and 16S rRNA gene analysis. A new species Halomonas sp.
View Article and Find Full Text PDF