This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible associations between physiological correlates of hypnotic depth.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) thermometry offers a noninvasive, localized method for estimating temperature by leveraging the temperature-dependent chemical shift of water relative to a temperature-stable reference metabolite under suitable calibration. Consequentially, this technique has significant potential as a tool for postmortem MR examinations in forensic medicine and pathology. In these examinations, the deceased are examined at a wide range of body temperatures, and MRS thermometry may be used for the temperature adjustment of magnetic resonance imaging (MRI) protocols or for corrections in the analysis of MRI or MRS data.
View Article and Find Full Text PDFTobacco smoking is one of the main causes of premature death worldwide and quitting success remains low, highlighting the need to understand the neurobiological mechanisms underlying relapse. Preclinical models have shown that the amygdala and glutamate play an important role in nicotine addiction. The aims of this study were to compare glutamate and other metabolites in the amygdala between smokers and controls, and between different smoking states.
View Article and Find Full Text PDFPurpose: Functional understanding of the periaqueductal gray (PAG), a clinically relevant brainstem region, can be advanced using H-MRS. However, the PAG's small size and high levels of physiological noise are methodologically challenging. This study aimed to (1) improve H-MRS quality in the PAG using spectral registration for frequency and phase error correction; (2) investigate whether spectral registration is particularly useful in cases of greater head motion; and (3) examine metabolite quantification using literature-based or individual-based water relaxation times.
View Article and Find Full Text PDF