Publications by authors named "N Zobiack"

Annexin 2 is a Ca(2+)-regulated membrane protein and an F-actin-binding protein enriched at actin assembly sites both, on the plasma membrane and on endosomal vesicles. Here, we identify annexin 2 as a phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2))-interacting protein, thereby explaining this specific membrane association. Using the pleckstrin-homology (PH) domain of phospholipase Cdelta1 fused to yellow fluorescent protein as a marker for PtdIns(4,5)P(2), we show that annexin 2 and its ligand p11 (S100A10) are targeted to sites of PtdIns(4,5)P(2) enrichment where F-actin accumulates.

View Article and Find Full Text PDF

The formyl peptide-like receptor FPRL1 is a member of the chemoattractant subfamily of G protein- coupled receptors involved in regulating leukocyte migration in inflammation. To elucidate mechanisms underlying the internalization of ligand-bound FPRL1 and possible receptor recycling, we characterized the endocytic itinerary of FPRL1. We show that agonist-triggered internalization from the plasma membrane into intracellular compartments is prevented by perturbation of clathrin-mediated endocytosis, such as expression of the dominant-negative clathrin Hub mutant, siRNA-mediated depletion of cellular clathrin and expression of a dominant-negative mutant of the large GTPase dynamin.

View Article and Find Full Text PDF

The Ca2+- and lipid-binding protein annexin 2, which resides in a tight heterotetrameric complex with the S100 protein S100A10 (p11), has been implicated in the structural organization and dynamics of endosomal membranes. To elucidate the function of annexin 2 and S100A10 in endosome organization and trafficking, we used RNA-mediated interference to specifically suppress annexin 2 and S100A10 expression. Down-regulation of both proteins perturbed the distribution of transferrin receptor- and rab11-positive recycling endosomes but did not affect uptake into sorting endosomes.

View Article and Find Full Text PDF

Annexin 2 is a Ca2+-regulated membrane- and F-actin-binding protein implicated in the stabilization or regulation of membrane/cytoskeleton contacts, or both, at the plasma membrane and at early endosomal membranes. To analyze the dynamic nature of such action we investigated whether annexin 2 could be found at sites of localized actin rearrangements occurring at the plasma membrane of HeLa cells infected with noninvading enteropathogenic Escherichia coli (EPEC). We show that adherent EPEC microcolonies, which are known to induce the formation of actin-rich pedestals beneath them, specifically recruit annexin 2 to the sites of their attachment.

View Article and Find Full Text PDF

The Ca(2+) and membrane binding protein annexin 2 can form a heterotetrameric complex with the S100A10 protein and this complex is thought to serve a bridging or scaffolding function in the membrane underlying cytoskeleton. To elucidate which of the subunits targets the complex to the subplasmalemmal region in live cells we employed YFP/CFP fusion proteins and live cell imaging in HepG2 cells. We show that monomeric annexin 2 is targeted to the plasma membrane whereas non-complexed S100A10 acquires a general cytosolic distribution.

View Article and Find Full Text PDF