Publications by authors named "N Zine"

Electrochemical paper-based analytical devices (ePADs) offer an innovative, low-cost, and environmentally friendly approach for real-time diagnostics. In this study, we developed a functional all-inkjet paper-based electrochemical immunosensor using gold (Au) printed ink to detect salivary cortisol. Covalent binding of the cortisol monoclonal antibody onto the printed Au surface was achieved through electrodeposition of 4-carboxymethylaniline (CMA), with ethanolamine passivation to prevent non-specific binding.

View Article and Find Full Text PDF

Paraquat (PQ) is a highly toxic herbicide that has been prohibited in almost 70 countries, but remains in use worldwide. Thus, routine on-site PQ monitoring is a key mechanism to ensure safety and efficiently enforce regulations. Herein, a label-free portable electrochemical aptasensor for the detection of PQ was developed by utilizing aptamer designed to specifically recognize PQ.

View Article and Find Full Text PDF

We propose a new strategy using a sandwich approach for the detection of two HF biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies (mAbs) using bis (sulfosuccinimidyl) suberate (BS) as a cross-linker for the pre-concentration of two biomarkers (TNF-α and IL-10). In addition, our ISFETs were biofunctionalized with polyclonal antibodies (pAbs) (TNF-α and IL-10).

View Article and Find Full Text PDF

Food allergies trigger a variety of clinical adverse symptoms and clinical evidence suggests that the presence of food allergy-related IgG can be helpful in the diagnosis when analyzed at the peptide-epitope level. To validate and select the peptides based on their specificity toward hazelnut or peanut epitopes, the authors of this study developed a silicon-based microchip coupled with click-chemistry bound peptides identified by the Fraunhofer Institute for Cell Therapy and Immunology. Peptides related to hazelnut and peanut allergies were identified and used to develop a silicon-based microchip.

View Article and Find Full Text PDF

Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery.

View Article and Find Full Text PDF