Enzymatic catalysis offers notable advantages, including exceptional catalytic efficiency, selectivity, and the ability to operate under mild conditions. However, its widespread application is hindered by the high costs associated with enzymes and cofactors. Materials-mediated immobilization technology has proven effective in the recycling of enzymes and cofactors.
View Article and Find Full Text PDFIntroduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.
View Article and Find Full Text PDFBackground: Cardiac arrest (CA) triggers a systemic inflammatory response, resulting in brain and cardiovascular dysfunction. The red blood cell distribution width (RDW)-to-albumin ratio (RAR) has been widely explored in various inflammation-related diseases. However, the predictive value of RAR for the prognosis of CA remains unclear.
View Article and Find Full Text PDFFibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
An intelligent humidity sensing system has been developed for real-time monitoring of human behaviors through respiration detection. The key component of this system is a humidity sensor that integrates a thermistor and a micro-heater. This sensor employs porous nanoforests as its sensing material, achieving a sensitivity of 0.
View Article and Find Full Text PDF