Publications by authors named "N Y Honbo"

Aims: We recently reported that immunosuppression with FTY720 improves cardiac function and extends longevity in Hypomorphic ApoE mice deficient in scavenger receptor Type-BI expression, also known as the HypoE/SR-BI(–/–) mouse model of diet-induced coronary atherosclerosis and myocardial infarction (MI). In this study, we tested the impact of FTY720 on cardiac dysfunction in HypoE/SR-BI(–/–) mice that survive MI and subsequently develop chronic heart failure.

Methods/results: HypoE/SR-BI(–/–) mice were bred to Mx1-Cre transgenic mice, and offspring were fed a high-fat diet (HFD) for 3.

View Article and Find Full Text PDF

Cardiovascular disease is the leading cause of death in Western countries. A major limitation of current treatments is the inability to efficiently repair or replace dead myocardium. Recently, stem cell-based therapies have been explored as an avenue to circumvent current therapeutic limitations.

View Article and Find Full Text PDF

FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure.

View Article and Find Full Text PDF

Background: We investigated the hypothesis that postconditioning by FTY720 (FTY) in isolated perfused mouse hearts is independent of the sphingosine 1-phosphate (S1P) pathway.

Material And Methods: Ex vivo hearts were exposed to postconditioning (POST) by either ischemia or FTY720. Protection against ischemia/reperfusion (IR) injury was measured by recovery of left ventricular developed pressure (LVDP) and infarct size.

View Article and Find Full Text PDF

Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1:SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC.

View Article and Find Full Text PDF