Publications by authors named "N X Barrezueta"

Article Synopsis
  • The text discusses the importance of annotating multiple brain regions in mouse models for neuroscience research and highlights the limitations of manual annotation by trained pathologists, which slows down the overall process.
  • It introduces AnNoBrainer, an open-source software tool that uses deep learning and other advanced techniques to automate brain region annotation on pathology slides, aiming to improve efficiency.
  • AnNoBrainer has shown to be accurate and reproducible, cutting annotation time by about 50%, and meets expert standards, thereby facilitating faster image analysis in neuroscience labs.
View Article and Find Full Text PDF

Fibrosis is an exaggerated form of tissue repair that occurs with serious damage or repetitive injury and ultimately leads to organ failure due to the excessive scarring. Increased calcium ion entry through the TRPC6 channel has been associated with the pathogenesis of heart and glomerular diseases, but its role in renal interstitial fibrosis is unknown. We studied this by deletion of Trpc6 in mice and found it decreased unilateral ureteral obstruction-induced interstitial fibrosis and blunted increased mRNA expression of fibrosis-related genes in the ureteral obstructed kidney relative to that in the kidney of wild-type mice.

View Article and Find Full Text PDF

Klotho is a type-1 membrane protein predominantly produced in the kidney, the extracellular domain of which is secreted into the systemic circulation. Membranous and secreted Klotho protect organs, including the kidney, but whether and how Klotho directly protects the glomerular filter is unknown. Here, we report that secreted Klotho suppressed transient receptor potential channel 6 (TRPC6)-mediated Ca influx in cultured mouse podocytes by inhibiting phosphoinositide 3-kinase-dependent exocytosis of the channel.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology.

View Article and Find Full Text PDF

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes.

View Article and Find Full Text PDF