Abstract: This study outlines a variant of three-dimensional OH planar laser-induced fluorescence and its application in characterising a single bluff body stabilised flame inside a 12 burner annular combustor. In this variant of the method a relatively large volume was scanned slowly in order to calculate the full three-dimensional Flame Surface Density (FSD) distribution. The method used a combination of two scanning directions to overcome bias errors associated with laser sheet positions close to the flame edges.
View Article and Find Full Text PDFThis commentary focuses on how some Indigenous communities in the United States (U.S.) and Canada are addressing the opioid epidemic within the context of the COVID-19 pandemic, from the perspective of the co-authors as researchers, clinicians, and pharmacists working within or among Indigenous communities in three eastern Canadian provinces and two western U.
View Article and Find Full Text PDFThe noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously.
View Article and Find Full Text PDFFragments from the extracellular matrix proteins laminin and osteopontin and a sequence from VEGF have potent proangiogenic activity despite their small size (< 10 residues). However, these linear peptides have limited potential as drug candidates for therapeutic angiogenesis because of their poor stability. In the present study, we show that the therapeutic potential of these peptides can be significantly improved by "grafting" them into cyclic peptide scaffolds.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2011
We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion.
View Article and Find Full Text PDF