Unlabelled: The rotator cuff consists of several tendons and muscles that provide stability and force transmission in the shoulder joint. Whereas most rotator cuff tears are amenable to suture repair, the overall success rate of repair is low, and massive tears are prone to re-tear. Extracellular matrix (ECM) patches are used to augment suture repair, but they have limitations.
View Article and Find Full Text PDFMacroscale scaffolds created from cartilage-derived matrix (CDM) demonstrate chondroinductive or chondro-inductive properties, but many fabrication methods do not allow for control of nanoscale architecture. In this regard, electrospun scaffolds have shown significant promise for cartilage tissue engineering. However, nanofibrous materials generally exhibit a relatively small pore size and require techniques such as multilayering or the inclusion of sacrificial fibers to enhance cellular infiltration.
View Article and Find Full Text PDFFull-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears.
View Article and Find Full Text PDFPost-traumatic arthritis (PTA) frequently develops after intra-articular fracture of weight bearing joints. Loss of cartilage viability and post-injury inflammation have both been implicated as possible contributing factors to PTA progression. To further investigate chondrocyte response to impact and fracture, we developed a blunt impact model applying 70%, 80%, or 90% surface-to-surface compressive strain with or without induction of an articular fracture in a cartilage explant model.
View Article and Find Full Text PDFObjective: The open reduction and internal fixation of radial shaft fractures and osteotomies with standard 3.5-mm plates can be complicated by tendon irritation, hardware prominence, and fracture through the screw holes. With the advent of locking plate technology, implant companies and some surgeons have recommended expanding the indications for these devices; for example, using smaller, low-profile locking plates to suffice where a standard, larger plate would traditionally be used.
View Article and Find Full Text PDF