Publications by authors named "N Wender"

Aggregation and spreading of α-Synuclein (αSyn) are hallmarks of several neurodegenerative diseases, thus monitoring human αSyn (hαSyn) in animal models or cell cultures is vital for the field. However, the detection of native hαSyn in such systems is challenging. We show that the nanobody NbSyn87, previously-described to bind hαSyn, also shows cross-reactivity for the proteasomal subunit Rpn10.

View Article and Find Full Text PDF

Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion.

View Article and Find Full Text PDF

The relation of alpha-synuclein (alphaS) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated alphaS species have in neurotoxicity in vivo, we generated alphaS variants by a structure-based rational design. Biophysical analysis revealed that the alphaS mutants have a reduced fibrillization propensity, but form increased amounts of soluble oligomers.

View Article and Find Full Text PDF

The Entamoeba histolytica cell surface Gal/GalNAc-inhibitable lectin is a heterodimer between a heavy (170 kDa) subunit linked via a disulfide bond to a light (31 to 35 kDa) subunit. Five light subunit genes with high homology have been identified (Ehlgl1 to -5). We have previously shown that silencing of the expression of Ehlgl1, in the G3 trophozoites which had already been silenced in the amoebapore gene (Ehap-a), also suppressed the transcription of Ehlgl2 and -3 (strain RBV).

View Article and Find Full Text PDF

The parasitic protozoan Entamoeba histolytica relies on a very dynamic cytoskeleton in order to invade and survive in host tissues. Identification of cytoskeletal elements is key to understanding these processes. Here we present the characterization of EhLimA, the first LIM protein of E.

View Article and Find Full Text PDF