Publications by authors named "N Wade Hubbs"

Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma.

View Article and Find Full Text PDF

In Tennessee, populations of the state endangered Streamside Salamander (Ambystoma barbouri) are in decline as their distribution lies mostly within rapidly developing areas in the Nashville Basin. Information regarding the partitioning of genetic variation among populations of A. barbouri and the taxonomic status of these populations relative to northern populations and their congener, the Small-mouthed Salamander (A.

View Article and Find Full Text PDF

Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both and models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways.

View Article and Find Full Text PDF

For successful infection, viruses must recognize their respective host cells. A common mechanism of host recognition by viruses is to utilize a portion of the host cell as a receptor. Bacteriophage Sf6, which infects Shigella flexneri, uses lipopolysaccharide as a primary receptor and then requires interaction with a secondary receptor, a role that can be fulfilled by either outer membrane proteins (Omp) A or C.

View Article and Find Full Text PDF