Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.
View Article and Find Full Text PDFIntroduction: Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding Cytolethal Distending Toxin B (CdtB) and the Apoptosis Inducing Protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with Hemolysin E domains, heretofore only identified in prokaryotes.
View Article and Find Full Text PDFPlants release complex volatile compounds to attract mutualists, deter herbivores, and deceive pollinators. Here, we used herbivorous specialist flies that feed on mustard plants ( spp.) and microbe-feeding species ( and spp.
View Article and Find Full Text PDFHerbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of , a representative of a lineage nested within the that transitioned to herbivory ~10-15 million years ago.
View Article and Find Full Text PDF