The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.
View Article and Find Full Text PDFSingle-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein-DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level.
View Article and Find Full Text PDFModification of surface properties by polymer adsorption is a widely used technique to tune interactions in molecular experiments such as nanopore sensing. Here, we investigate how the ionic current noise through solid-state nanopores reflects the adsorption of short, neutral polymers to the pore surface. The power spectral density of the noise shows a characteristic change upon adsorption of polymer, the magnitude of which is strongly dependent on both polymer length and salt concentration.
View Article and Find Full Text PDF