A central feature of meiosis is the pairing of homologous maternal and paternal chromosomes ('homologues') along their lengths. Recognition between homologues and their juxtaposition in space is mediated by axis-associated recombination complexes. Also, pairing must occur without entanglements among unrelated chromosomes.
View Article and Find Full Text PDFWe show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci.
View Article and Find Full Text PDFMeiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action".
View Article and Find Full Text PDFA central basic feature of meiosis is pairing of homologous maternal and paternal chromosomes ("homologs") intimately along their lengths. Recognition between homologs and their juxtaposition in space are mediated by axis-associated DNA recombination complexes. Additional effects ensure that pairing occurs without ultimately giving entanglements among unrelated chromosomes.
View Article and Find Full Text PDFThe classical phenomenon of crossover interference is a one-dimensional spatial patterning process that produces evenly spaced crossovers during meiosis. Quantitative analysis of diagnostic molecules along budding yeast chromosomes reveals that this process also sets up a second, interdigitated pattern of related but longer periodicity, in a "two-tiered" patterning process. The second tier corresponds to a previously mysterious minority set of crossovers.
View Article and Find Full Text PDF