The cyclin-dependent kinase inhibitor p21(Waf-1/Cip-1) is expressed at high level during megakaryocyte differentiation, but its precise function remains unknown. In this study, it is confirmed that p21 was expressed at a high level in hypoploid (2N and 4N) and polyploid (at least 8N) human megakaryocytes derived from CD34(+) cells. A high expression of p27(Kip1), p16, cyclin E, and cyclin D3 was also found in both populations associated with a hypophosphorylated form of retinoblastoma protein, suggesting that the majority of hypoploid and polyploid megakaryocytes are G(1)-arrested cells.
View Article and Find Full Text PDFCancer Gene Ther
October 2001
The loss of BRCA1 function appears as an essential step in breast and ovarian epithelial cells oncogenesis and is consistent with the concept that BRCA1 acts as a tumor suppressor gene. However, the mechanism underlying this activity is not understood. In 1996, a retroviral vector was used for BRCA1 delivery to demonstrate that the transfer of BRCA1 inhibits breast and ovarian cancer cell growth.
View Article and Find Full Text PDFDuring differentiation, megakaryocytes increase ploidy through a process called endomitosis, whose mechanisms remain unknown. As it corresponds to abortive mitosis at anaphase and is associated with a multipolar spindle, investigation of chromosome segregation may help to better understand this cell-cycle abnormality. To examine this variation, a new method was developed to combine primed in situ labeling to label centromeres of one chromosome category and immunostaining of tubulin.
View Article and Find Full Text PDFThe discovery of the Mpl ligand (Mpl-L), also called thrombopoietin (TPO), has facilitated in vitro investigation of human megakaryocytopoiesis. By confocal microscopy, endomitosis appeared as abortive mitosis skipping late stages of mitosis. No telophase and cytokinesis were observed.
View Article and Find Full Text PDFRegulation of the platelet formation process is poorly understood. It has been shown that p45NF-E2 deficient mice have a profound defect in platelet formation and recently the first platelet/megakaryocytic gene regulated by NF-E2, thromboxane synthase (TXS), has been identified. In this study, we investigated TXS expression as a model of a gene regulated by NF-E2 during MK differentiation.
View Article and Find Full Text PDF