ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth.
View Article and Find Full Text PDFBRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing.
View Article and Find Full Text PDFThe maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR).
View Article and Find Full Text PDFThis report summarizes an international conference on molecular machines convened at New York University, Abu Dhabi by Piergiorgio Percipalle, George Shubeita and Serdal Kirmizialtin. The meeting was conceived around the epistemological question of what do we understand, or not understand (if we have open minds), about the degree to which cells operate by the individual actions of single enzymes or non-catalytic protein effectors, versus combinations of these in which their heterotypic association creates an entity that is more finely tuned and efficient - a machine. This theme was explored through a vivid series of talks, summarizing the latest findings on macromolecular complexes that operate in the nucleus or cytoplasm.
View Article and Find Full Text PDFRNA polymerase II is recruited to DNA double-strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage-induced long non-coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA-like molecules or degraded by different ribonucleases. They can also form double-stranded RNAs or DNA:RNA hybrids.
View Article and Find Full Text PDF