Publications by authors named "N Viovy"

Article Synopsis
  • During dry periods, decreasing soil moisture leads to plant water stress, highlighting the need for better quantification of a critical soil moisture threshold (θ) to improve climate and resource projections.* -
  • By combining satellite data and ground observations, researchers created a global map of θ, finding it averages at 0.19 m/m, with variations based on ecosystem types.* -
  • The study identified key factors influencing θ, such as aridity, leaf area, and soil texture, and noted an increase in the number of stressful days for plants over the last 40 years, which has implications for understanding water stress in ecosystems.*
View Article and Find Full Text PDF

Rain-fed pastoral systems are tightly connected to meteorological conditions. It is, therefore, likely that climate change, including changing atmospheric CO2 concentration, temperature, precipitation and patterns of climate extremes, will greatly affect pastoral systems. However, exact impacts on the productivity and carbon dynamics of these systems are still poorly understood, particularly over longtime scales.

View Article and Find Full Text PDF

Synthetic Nitrogen (N) usage in agriculture has greatly increased food supply over the past century. However, the intensive use of N fertilizer is nevertheless the source of numerous environmental issues and remains a major challenge for policymakers to understand, measure, and quantify the interactions and trade-offs between ecosystem carbon and terrestrial biodiversity loss. In this study, we investigate the impacts of a public policy scenario that aims to halve N fertilizer application across European Union (EU) agriculture on both carbon (C) sequestration and biodiversity changes.

View Article and Find Full Text PDF

During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO from 1901 to 2019.

View Article and Find Full Text PDF

Surface ozone (O) is a threat to forests by decreasing photosynthesis and, consequently, influencing the strength of land carbon sink. However, due to the lack of continuous surface O measurements, observational-based assessments of O impacts on forests are largely missing at hemispheric to global scales. Currently, some metrics are used for regulatory purposes by governments or national agencies to protect forests against the negative impacts of ozone: in particular, both Europe and United States (US) makes use of two different exposure-based metrics, i.

View Article and Find Full Text PDF