Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing.
View Article and Find Full Text PDFThe rapid pattern of population ageing in recent years increases the risk of appearance of associated neurodegenerative diseases. Dementias are one of the most feared disorders, and although not necessarily all elderly people have dementia, the number of people with this disease is increasing rapidly. The causes of dementia are multiple, and the diagnosis of the different types of dementia is complicated since most patients display mixed dementias and symptoms overlapping.
View Article and Find Full Text PDFThe prevalence of neurodegenerative disorders is increasing; however, an effective neuroprotective treatment is still remaining. Nutrition plays an important role in neuroprotection as recently shown by epidemiological and biochemical studies which identified food components as promising therapeutic agents. Neuroprotection includes mechanisms such as activation of specific receptors, changes in enzymatic neuronal activity, and synthesis and secretion of different bioactive molecules.
View Article and Find Full Text PDFAim: We proposed a rapid and high quality method to determine α-tocopherol (α-T) in different biopharmaceutical samples using liquid chromatography-diode array detector on-line ESI-MS/MS.
Materials & Methods: A working standard solution of α-T and internal standard, phenyl-5,7-dimethyl-d6-α-tocopherol, were used for optimization and validation of the method. Levels of α-T in nanoemulsions, serum and plasma samples were evaluated.
Its high metabolic rate and high polyunsaturated fatty acid content make the brain very sensitive to oxidative damage. In the brain, neuronal metabolism occurs at a very high rate and generates considerable amounts of reactive oxygen species and free radicals, which accumulate inside neurons, leading to altered cellular homeostasis and integrity and eventually irreversible damage and cell death. A misbalance in redox metabolism and the subsequent neurodegeneration increase throughout the course of normal aging, leading to several age-related changes in learning and memory as well as motor functions.
View Article and Find Full Text PDF