Background: Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness.
View Article and Find Full Text PDFAbstractCoral growth is critical to reef health, resilience under rapidly changing environmental conditions, and restoration efforts. Although fragmenting coral has been occurring for many years in an effort to restore reefs, recently it was discovered that microfragmenting, the process of cutting one piece of coral into many small pieces (about three to five polyps), induces exponential growth. Our study investigates the process by which microfragments of nine different genotypes from the stony coral species grow and exhibit Cyclin-E expression.
View Article and Find Full Text PDFPrevious studies have identified populations of dopamine neurons in the midbrain that colocalize cholecystokinin some of which project to the nucleus accumbens and caudate-putamen. The contribution of dopamine-colocalized peptide to the total releasable pool of cholecystokinin in these brain regions was investigated using microdialysis. Dopamine, dihydroxyphenylacetic acid and cholecystokinin immunoreactive levels in dialysates of the posterior medial nucleus accumbens and medial caudate-putamen were determined following 6-hydroxydopamine lesions of the ventral tegmental area and substantia nigra or transection of the medial forebrain bundle.
View Article and Find Full Text PDF