Int J Obes Relat Metab Disord
October 2001
Background: Several indirect arguments agree with the existence of a brown preadipocyte distinct from a white one. Nevertheless, to date, no molecular marker has been available to directly in vivo demonstrate this hypothesis.
Objective: The aim of this study was to find a gene expressed in brown preadipocyte but not in white and to use it as a molecular marker to analyse brown preadipocyte recruitment in different physiological and physiopathological situations.
Photoperiod variations are known to participate in the regulation of energy balance in different rodent species via melatonin, a neurosecretory product synthesized by the pineal gland during the night. A direct effect of melatonin on adipose tissue has been suggested since binding sites for the indole have been described on brown adipocytes. The aim of this study was to investigate a genetic effect of melatonin on isolated Siberian hamster brown adipocytes using differential display RT-PCR (DDRT-PCR).
View Article and Find Full Text PDFInt J Obes Relat Metab Disord
June 1999
Uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) are mitochondrial proteins that may play a role in the control of energy expenditure by uncoupling respiration from ATP synthesis. The present review focuses on data obtained in humans. UCP2 is widely expressed in the body, whereas UCP3 expression is restricted to skeletal muscle.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 1999
Uncoupling protein-2 (UCP2) is a novel mitochondrial protein that may be involved in the control of energy expenditure. We have previously reported an upregulation of adipose tissue UCP2 mRNA expression during fasting in humans. Analysis of changes in metabolic parameters suggested that fatty acids may be associated with the increased UCP2 mRNA level.
View Article and Find Full Text PDFMelatonin has been shown, in various rodent species, to mediate photoperiodic effects on body weight and, consequently, fat mass. Pharmacological investigations indicated that the brown adipose tissue of Siberian hamsters possesses a melatonin binding site with a dissociation constant of 570+/-300 pM and a density of 3.2+/-1.
View Article and Find Full Text PDF