Publications by authors named "N Vayssiere"

In humans, the posterior cingulate cortex contains an area sensitive to visual cues to self-motion. This cingulate sulcus visual area (CSv) is structurally and functionally connected with several (multi)sensory and (pre)motor areas recruited during locomotion. In nonhuman primates, electrophysiology has shown that the cingulate cortex is also related to spatial navigation.

View Article and Find Full Text PDF

In daily life, fast visual recognition of surrounding objects is facilitated through context-based expectations. However the ability to rapidly and accurately recognize unexpected stimuli in a given environment is also crucial and this ability is impaired with age. The present fMRI study aimed at comparing in young and older adults the neural correlates of fast object processing.

View Article and Find Full Text PDF

The aim of the present study was to uncover a possible common neural organizing principle in spoken and written communication, through the coupling of perceptual and motor representations. In order to identify possible shared neural substrates for processing the basic units of spoken and written language, a sparse sampling fMRI acquisition protocol was performed on the same subjects in two experimental sessions with similar sets of letters being read and written and of phonemes being heard and orally produced. We found evidence of common premotor regions activated in spoken and written language, both in perception and in production.

View Article and Find Full Text PDF

We created a volumetric template of the marmoset (Callithrix jacchus) brain, which enables localization of the cortical areas defined in the Paxinos et al. (The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, Cambridge, 2012) marmoset brain atlas, as well as seven broader cortical regions (occipital, temporal, parietal, prefrontal, motor, limbic, insular), different brain compartments (white matter, gray matter, cerebro-spinal fluid including ventricular spaces), and various other structures (brain stem, cerebellum, olfactory bulb, hippocampus).

View Article and Find Full Text PDF

The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion.

View Article and Find Full Text PDF