Most realizations of memristive devices exhibit characteristic noise sometimes described as random telegraph noise. These fluctuations in current, ubiquitous in nature, carry significant implications for device performance, reliability, and the broader landscape of memristor technology applications. Here, we study inherent random fluctuations observed in silver based granular memristive devices operating under steady bias conditions.
View Article and Find Full Text PDFNanostructuring can greatly improve the electrode stability of rechargeable battery systems, such as Zn-Ag. In this report, we investigate the physical mechanisms by which nanostructuring alters structural properties of nanomaterials and thereby influences the structural stability of electrodes. We specifically consider the effects of Au-based nanoscaffolds on Ag.
View Article and Find Full Text PDFQuantum photonic devices require robust sources of single photons to perform basic computational and communication protocols. Thus, developing scalable, integrable, and efficient quantum light sources has become crucial for the realization of quantum photonic devices. Single quantum dots are promising sources of quantum light due to their tunable emission wavelength.
View Article and Find Full Text PDFPrimary zinc-silver batteries are widely employed in military, aerospace, and marine applications. However, the development of secondary zinc-silver batteries is still a subject of on-going research. For example, these batteries suffer from rapid capacity loss during cycling due to instabilities of the zinc anode and the silver cathode.
View Article and Find Full Text PDFEmbedding nanoparticles with different functionalities into soft substrates is a convenient tool to realize technologically significant multifunctional materials. This study focuses on incorporating bimetallic plasmonic nanoparticles into soft crystals made of cetyltrimethylammonium bromide-iodide. We observed the emergence of a novel symmetry-lowered cetrimonium crystal polymorph that enables the realization of strong interparticle plasmonic coupling in these composite materials.
View Article and Find Full Text PDF