Numerous studies have documented the mechanisms that regulate intracellular pH (pH(i)) in hippocampal neurons in response to an acid load. Here, we studied the response of pH(i) to depolarization in cultured hippocampal neurons. Elevation of external K+ (6-30 mm) elicited an acid transient followed by a large net alkaline shift.
View Article and Find Full Text PDFCarbonic anhydrase (CA) activity in the brain extracellular space is attributable mainly to isoforms CA4 and CA14. In brain, these enzymes have been studied mostly in the context of buffering activity-dependent extracellular pH transients. Yet evidence from others has suggested that CA4 acts in a complex with anion exchangers (AEs) to facilitate Cl(-)-HCO(3)(-) exchange in cotransfected cells.
View Article and Find Full Text PDFIon-selective microelectrodes (ISMs) have been used extensively in neurophysiological studies. ISMs selective for H(+) and Ca(2+) are notable for their sensitivity and selectivity, but suffer from a slow response time, and susceptibility to noise because of the high electrical resistance of the respective ion exchange cocktails. These drawbacks can be overcome by using a "coaxial" or "concentric" inner micropipette to shunt the bulk of the ion exchanger resistance.
View Article and Find Full Text PDFBuffering of the brain extracellular fluid is catalyzed by carbonic anhydrase (CA) activity. Whereas the extracellular isoform CA XIV has been localized exclusively to neurons in the brain, and to glial cells in the retina, there has been uncertainty regarding the form or forms of CA on the surface of brain astrocytes. We addressed this issue using physiological methods on cultured and acutely dissociated rat astrocytes.
View Article and Find Full Text PDFPrevious studies have implicated extracellular carbonic anhydrases (CAs) in buffering the alkaline pH shifts that accompany neuronal activity in the rat and mouse hippocampus. CAs IV and XIV both have been proposed to mediate this extracellular buffering. To examine the relative importance of these two isozymes in this and other physiological functions attributed to extracellular CAs, we produced CA IV and CA XIV knockout (KO) mice by targeted mutagenesis and the doubly deficient CA IV/XIV KO mice by intercrossing the individual null mice.
View Article and Find Full Text PDF