Tumor cells of acute lymphoblastic leukemia (ALL) may have various genetic abnormalities. Some of them lead to a complete loss of certain genes. Our aim was to reveal biallelic deletions of genes in Ph-negative T-ALL.
View Article and Find Full Text PDFMultiple myeloma (MM) is a disease characterized by spatiotemporal heterogeneity of tumor clones. Different genetic aberrations can be observed simultaneously in tumor cells from different loci, and as the disease progresses, new subclones may appear. The role of liquid biopsy, which is based on the analysis of tumor DNA circulating in the blood plasma, continues to be explored in MM.
View Article and Find Full Text PDFThe landscape of chromosomal aberrations in the tumor cells of the patients with B-ALL is diverse and can influence the outcome of the disease. Molecular karyotyping at the onset of the disease using chromosomal microarray (CMA) is advisable to identify additional molecular factors associated with the prognosis of the disease. Molecular karyotyping data for 36 patients with Ph-negative B-ALL who received therapy according to the ALL-2016 protocol are presented.
View Article and Find Full Text PDFMany genetic markers are known to distinguish tumor cells from normal. Genetic lesions found at disease onset often belong to a predominant tumor clone, and further observation makes it possible to assess the fate of this clone during therapy. However, minor clones escape monitoring and become unidentified, leading to relapses.
View Article and Find Full Text PDFMultiple myeloma (MM) is characterized by heterogeneity of tumor cells. The study of tumor cells from blood, bone marrow, plasmacytoma, etc., allows us to identify similarities and differences in tumor lesions of various anatomical localizations.
View Article and Find Full Text PDF