Publications by authors named "N V Liubomirskaia"

An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlueScript II KS+ (pBSLTR) vector, and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the ORF of the lacZ gene contained in the vector; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction.

View Article and Find Full Text PDF

A search for noncanonical variants of the gypsy retrotransposon (MDG4) in the genome of the Drosophila melanogaster strain G32 led to the cloning of four copies of the poorly studied 7411-bp gtwin element. Sequence analysis showed that gtwin belongs to a family of endogeneous retroviruses, which are widespread in the Drosophila genome and have recently been termed insect erantiviruses. The gtwin retrotransposon is evolutionarily closest to MDG4, as evident from a good alignment of their nucleotide sequences including ORF1 (the pol gene) and ORF3 (the env gene), as well as the amino acid sequences of their protein products.

View Article and Find Full Text PDF

This article summarizes the results of a ten-year study of genetic instability of a mutator strain of Drosophila melanogaster caused by transposition of the gypsy retrotransposon. The results of other authors working with an analogous system are analyzed. Possible mechanisms are suggested for the interaction of gypsy with the cell gene flamenco that participates in transposition control of this mobile element.

View Article and Find Full Text PDF

Distribution of two structural functional variants of the MDG4 (gypsy) mobile genetic element was examined in 44 strains of Drosophila melanogaster. The results obtained suggest that less transpositionally active MDG4 variant is more ancient component of the Drosophila genome. Using Southern blotting, five strains characterized by increased copy number of MDG4 with significant prevalence of the active variant over the less active one were selected for further analysis.

View Article and Find Full Text PDF

The distribution of two variants of MDG4 (gypsy) was analyzed in several Drosophila melanogaster strains. Southern blot hybridization revealed the inactive variant of MDG4 in all strains examined and active MDG4 only in some of them. Most of the strains harboring the active MDG4 variant were recently isolated from natural populations.

View Article and Find Full Text PDF