Publications by authors named "N V Kryzhevoi"

The predominant reason for the damaging power of high-energy radiation is multiple ionization of a molecule, either direct or via the decay of highly excited intermediates, as, e.g., in the case of X-ray irradiation.

View Article and Find Full Text PDF

Using electron spectroscopy, we investigated the nanoplasma formation process generated in xenon clusters by intense soft x-ray free electron laser (FEL) pulses. We found clear FEL intensity dependence of electron spectra. Multistep ionization and subsequent ionization frustration features are evident for the low FEL-intensity region, and the thermal electron emission emerges at the high FEL intensity.

View Article and Find Full Text PDF

Although the biological hazard of alpha-particle radiation is well-recognized, the molecular mechanisms of biodamage are still far from being understood. Irreparable lesions in biomolecules may not only have mechanical origin but also appear due to various electronic and nuclear relaxation processes of ionized states produced by an alpha-particle impact. Two such processes were identified in the present study by considering an acetylene dimer, a biologically relevant system possessing an intermolecular hydrogen bond.

View Article and Find Full Text PDF

X-ray absorption and Auger electron spectroscopies are demonstrated to be powerful tools to unravel the electronic structure of solvated ions. In this work for the first time, we use a combination of these methods in the tender X-ray regime. This allowed us to address electronic transitions from deep core levels, to probe environmental effects, specifically in the bulk of the solution since the created energetic Auger electrons possess large mean free paths, and moreover, to obtain dynamical information about the ultrafast delocalization of the core-excited electron.

View Article and Find Full Text PDF

X-ray photoelectron and KLL Auger spectra were measured for the K^{+} and Cl^{-} ions in aqueous KCl solution. While the XPS spectra of these ions have similar structures, both exhibiting only weak satellites near the main line, the Auger spectra differ dramatically. Contrary to the chloride case, a very strong extra peak was found in the Auger spectrum of K^{+} at the low kinetic energy side of the ^{1}D state.

View Article and Find Full Text PDF