J Tissue Eng Regen Med
July 2018
The accumulation of protein-bound toxins in dialyzed patients is strongly associated with their high morbidity and mortality. The bioartificial kidney device (BAK), containing proximal tubule epithelial cells (PTECs) seeded on functionalized synthetic hollow fibre membranes, may be a powerful solution for the active removal of those metabolites. In an earlier study, we developed an upscaled BAK containing conditionally immortalized human PTEC with functional organic cationic transporter 2.
View Article and Find Full Text PDFThe limited removal of metabolic waste products in dialyzed kidney patients leads to high morbidity and mortality. One powerful solution for a more complete removal of those metabolites might be offered by a bioartificial kidney device (BAK), which contains a hybrid "living membrane" with functional proximal tubule epithelial cells (PTEC). These cells are supported by an artificial functionalized hollow fiber membrane (HFM) and are able to actively remove the waste products.
View Article and Find Full Text PDFThe bioartificial kidney (BAK) aims at improving dialysis by developing 'living membranes' for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM.
View Article and Find Full Text PDF