Recent discoveries in nonlinear optical properties of nanoparticle colloids make actual the challenge to lower the energy threshold of phase conjugation and move it into the domain of shorter pulse widths. A novel effect of the stimulated Rayleigh-Mie scattering (SRMS) in two-photon absorbing nanocolloids is considered as a promising answer to this challenge. We report the results of experimental and theoretical study of the two-photon-assisted SRMS in Ag and ZnO nanocolloids in the nanosecond-to-picosecond pulse width domain.
View Article and Find Full Text PDFIn this paper, we studied the influence of nonmagnetic iron oxide nanoparticles on fibrin gel formation and its structure using dynamic light scattering. The surface of nanoparticles produced by a new method in acoustoplasma discharge with cavitation has specific morphology and accelerates the rate of fibrin gel formation, i.e.
View Article and Find Full Text PDFStimulated Rayleigh-Mie scattering (SRMS) in two-photon absorption liquids is realized by a Fourier-transform-limited pulsed Nd-glass laser. For the first time, to the best of our knowledge, we have measured anti-Stokes spectral shifts of SRMS in toluene and hexane colloids of Ag nanoparticles, as well as in pure toluene. These values appreciably exceed the Rayleigh line width in those liquids.
View Article and Find Full Text PDFThe interaction of Escherichia coli Fpg protein, which catalyzes excision of several damaged purine bases including 8-oxoguanine (oxoG) from DNA with a set of single- (ss) and double-stranded (ds) 23-mer oligodeoxyribonucleotides (ODNs) containing 8-oxoguanine(s) at various positions, has been investigated. The affinities of different ss ODNs (KM = 0.55-1.
View Article and Find Full Text PDF