Publications by authors named "N Twine"

Epistasis refers to changes in the effect on phenotype of a unit of genetic information, such as a single nucleotide polymorphism or a gene, dependent on the context of other genetic units. Such interactions are both biologically plausible and good candidates to explain observations which are not fully explained by an additive heritability model. However, the search for epistasis has so far largely failed to recover this missing heritability.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a significant global health threat, resulting in 4.96 million deaths in 2019, with projections reaching 10 million by 2050. This resistance, primarily due to the overuse of antibiotics, complicates the treatment of infections caused by various microorganisms, including the gram-negative bacterium Escherichia coli.

View Article and Find Full Text PDF

Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases.

View Article and Find Full Text PDF

Coronary artery disease (CAD) has the highest disease burden worldwide. To manage this burden, predictive models are required to screen patients for preventative treatment. A range of variables have been explored for their capacity to predict disease, including phenotypic (age, sex, BMI and smoking status), medical imaging (carotid artery thickness) and genotypic.

View Article and Find Full Text PDF