Publications by authors named "N Treps"

Frequency-degenerate pulsed type-I parametric downconversion is a widely used source of squeezed light for numerous quantum optical applications. However, this source is typically spectrally multimode, and the generated squeezing is distributed between many spectral modes with a limited degree of squeezing per mode. We show that in a nonlinear crystal, where the condition of complete group velocity matching (GVM) for the pump and the signal is satisfied, the number of generated modes may be as low as two or three modes.

View Article and Find Full Text PDF

The exploitation of the full structure of multimode light fields enables compelling capabilities in many fields including classical and quantum information science. We exploit data-encoding on the optical phase of the pulses of a femtosecond laser source for a photonic implementation of a reservoir computing protocol. Rather than intensity detection, data-reading is done via homodyne detection that accesses combinations of an amplitude and a phase of the field.

View Article and Find Full Text PDF

We show that instantaneous spatial singular modes of light in a dynamically evolving, turbulent atmosphere offer significantly improved high-fidelity signal transmission as compared to standard encoding bases corrected by adaptive optics. Their enhanced stability in stronger turbulence is associated with a subdiffusive algebraic decay of the transmitted power with evolution time.

View Article and Find Full Text PDF

We theoretically investigate the noise properties of harmonic cavity nanolasers by introducing a model of coupled equations of evolution of the modes, taking spontaneous emission into account. This model is used to predict the noise among the nanolaser Hermite-Gaussian modes, both in continuous wave and mode-locked regimes. In the first case, the laser noise is described in terms of noise modes, thus illustrating the role of the laser dynamics.

View Article and Find Full Text PDF

The power spectrum of an optical field can be acquired without a spectrally resolving detector by means of Fourier-transform spectrometry, based on measuring the temporal autocorrelation of the optical field. Analogously, we here perform temporal envelope measurements of ultrashort optical pulses without time resolved detection. We introduce the technique of Fourier transform chronometry, where the temporal envelope is acquired by measuring the frequency autocorrelation of the optical field in a linear interferometer.

View Article and Find Full Text PDF