Publications by authors named "N Trautmann"

The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers Z ≳ 100 (refs. ). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a study on the chemical reactivity of superheavy elements nihonium (Nh) and moscovium (Mc) using a new chromatography setup, revealing new insights into their properties.
  • The isotopes of Mc were produced at GSI Helmholtzzentrum in Germany, and their interaction with silicon oxide and gold surfaces was examined, providing the first measurements for their adsorption enthalpy.
  • The findings showed that Nh and Mc have weaker interactions with silicon oxide compared to their lighter counterparts, but display higher reactivity than neighboring elements copernicium and flerovium due to significant relativistic effects.
View Article and Find Full Text PDF

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character.

View Article and Find Full Text PDF

Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed sub-shell, which originates from a large spin-orbit splitting between the and orbitals. One unpaired electron in the outermost sub-shell in Nh is expected to give rise to a higher chemical reactivity.

View Article and Find Full Text PDF

A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively.

View Article and Find Full Text PDF