Publications by authors named "N Tolga Yardimci"

Terahertz waves offer advantages for nondestructive detection of hidden objects/defects in materials, as they can penetrate most optically-opaque materials. However, existing terahertz inspection systems face throughput and accuracy restrictions due to their limited imaging speed and resolution. Furthermore, machine-vision-based systems using large-pixel-count imaging encounter bottlenecks due to their data storage, transmission and processing requirements.

View Article and Find Full Text PDF

Intra-specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline "reference ITV" (ITV ) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well-watered conditions, representing the conservative sampling design commonly used for species-level ecophysiological traits.

View Article and Find Full Text PDF

Efficient terahertz generation and detection are a key prerequisite for high performance terahertz systems. Major advancements in realizing efficient terahertz emitters and detectors were enabled through photonics-driven semiconductor devices, thanks to the extremely wide bandwidth available at optical frequencies. Through the efficient generation and ultrafast transport of charge carriers within a photo-absorbing semiconductor material, terahertz frequency components are created from the mixing products of the optical frequency components that drive the terahertz device - a process usually referred to as photomixing.

View Article and Find Full Text PDF

Surface states generally degrade semiconductor device performance by raising the charge injection barrier height, introducing localized trap states, inducing surface leakage current, and altering the electric potential. We show that the giant built-in electric field created by the surface states can be harnessed to enable passive wavelength conversion without utilizing any nonlinear optical phenomena. Photo-excited surface plasmons are coupled to the surface states to generate an electron gas, which is routed to a nanoantenna array through the giant electric field created by the surface states.

View Article and Find Full Text PDF