Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained.
View Article and Find Full Text PDFThroughout evolution, protein families undergo substantial sequence divergence while preserving structure and function. Although most mutations are deleterious, evolution can explore sequence space via epistatic networks of intramolecular interactions that alleviate the harmful mutations. However, comprehensive analysis of such epistatic networks across protein families remains limited.
View Article and Find Full Text PDFThe mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants.
View Article and Find Full Text PDFEpistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements.
View Article and Find Full Text PDF