Photonic technologies promise to deliver quantitative, multiplex, and inexpensive medical diagnostic platforms by leveraging the highly scalable processes developed for the fabrication of semiconductor microchips. However, in practice, the affordability of these platforms is limited by complex and expensive sample handling and optical alignment. We previously reported the development of a disposable photonic assay that incorporates inexpensive plastic micropillar microfluidic cards for sample delivery.
View Article and Find Full Text PDFThe biocompatibility of materials used in electronic devices is critical for the development of implantable devices like pacemakers and neuroprosthetics, as well as in future biomanufacturing. Biocompatibility refers to the ability of these materials to interact with living cells and tissues without causing an adverse response. Therefore, it is essential to evaluate the biocompatibility of metals and semiconductor materials used in electronic devices to ensure their safe use in medical applications.
View Article and Find Full Text PDFRapid and accurate detection of fentanyl (highly potent opioid) is a critical importance due to current opioids crisis worldwide. We report the highly sensitive detection of fentanyl utilizing the synergetic effect of nanoporous silicon as a substrate with a high interfacial area and specific antibody functionalization of nanoporous silicon. The electrochemical sensor consists of gold working and counter electrodes deposited on nanoprous silicon, antibodies immobilized between these electrodes and an Ag/AgCl reference electrode.
View Article and Find Full Text PDFPrecisely controlling delivery of drugs and other reagents is important for intravital microscopy studies. In this work, photolithographic integration of micro-nozzles onto a microfluidic platform was performed to tune the fluid flow profile and depth of penetration into biological tissue mimics. Performance characteristics were measured by correlating the flow rate through the device to the applied pressure and/or delivery of dyes into solution and agarose gel-based phantom tissue.
View Article and Find Full Text PDFDecades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection.
View Article and Find Full Text PDF