Circadian disruption enhances cancer risk, and many tumors exhibit disordered circadian gene expression. We show rhythmic gene expression is unexpectedly robust in clear cell renal cell carcinoma (ccRCC). Furthermore, the clock gene is higher in ccRCC than in healthy kidneys, unlike in other tumor types.
View Article and Find Full Text PDFCurr Opin Struct Biol
October 2024
Pioneering transcription factors (TFs) can drive cell fate changes by binding their DNA motifs in a repressive chromatin environment. Recent structures illustrate emerging rules for nucleosome engagement: TFs distort the nucleosomal DNA to gain access or employ alternative DNA-binding modes with smaller footprints, they preferentially access solvent-exposed motifs near the entry/exit sites, and frequently interact with histones. The extent of TF-histone interactions, in turn, depends on the motif location on the nucleosome, the type of DNA-binding fold, and adjacent domains present.
View Article and Find Full Text PDFCircadian disruption enhances cancer risk, and many tumors exhibit disordered circadian gene expression. We show rhythmic gene expression is unexpectedly robust in clear cell renal cell carcinoma (ccRCC). Furthermore, the clock gene is higher in ccRCC than in healthy kidneys, unlike in other tumor types.
View Article and Find Full Text PDF