Publications by authors named "N Thielens"

Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade.

View Article and Find Full Text PDF

Background: Gla-domainless factor (F) Xa (GD-FXa) was proposed as a trap to endogenous anticoagulant tissue factor pathway inhibitor (TFPI) to restore thrombin generation in hemophilia. Using computational chemistry and experimental approaches, we previously showed that S195A GD-FXa also binds TFPI and restores coagulation in plasma obtained from person(s) with hemophilia.

Methods: To design a GD-FXa variant with improved anti-TFPI affinity, we performed molecular dynamics simulations and identified suitable sites for mutagenesis.

View Article and Find Full Text PDF

Complement C1s association with the pathogenesis of several diseases cannot be simply explained only by considering its main role in activating the classical complement pathway. This suggests that non-canonical functions are to be deciphered for this protease. Here the focus is on C1s cleavage of HMGB1 as an auxiliary target.

View Article and Find Full Text PDF

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, lack of attached gingiva and thin and fragile gums leading to gingival recession. Connective tissue abnormalities of pEDS typically include easy bruising, pretibial plaques, distal joint hypermobility, hoarse voice, and less commonly manifestations such as organ or vessel rupture. pEDS is caused by heterozygous missense mutations in and genes of the classical complement C1 complex.

View Article and Find Full Text PDF

CD47 recognized by its macrophage receptor SIRPα serves as a "don't eat-me" signal protecting viable cells from phagocytosis. How this is abrogated by apoptosis-induced changes in the plasma membrane, concomitantly with exposure of phosphatidylserine and calreticulin "eat-me" signals, is not well understood. Using STORM imaging and single-particle tracking, we interrogate how the distribution of these molecules on the cell surface correlates with plasma membrane alteration, SIRPα binding, and cell engulfment by macrophages.

View Article and Find Full Text PDF