Uranium is a naturally occurring radionuclide. Its redistribution, primarily due to human activities, can have adverse effects on human and non-human biota, which poses environmental concerns. The molecular mechanisms of uranium tolerance and the cellular response induced by uranium exposure in bacteria are not yet fully understood.
View Article and Find Full Text PDFThe melting transition of Li-DNA fibers immersed in ethanol-water solutions has been studied using calorimetry and neutron diffraction techniques. The data have been analyzed using the Peyrard-Bishop-Dauxois model to determine the strengths of the intra- and inter-base pair potentials. The data and analysis show that the potentials are weaker than those for DNA in water.
View Article and Find Full Text PDFOverstretching of B-DNA is currently understood as force-induced melting. Depending on the geometry of the stretching experiment, the force threshold for the overstretching transition is around 65 or 110 pN. Although the mechanisms behind force-induced melting have been correctly described by Rouzina and Bloomfield [Biophys.
View Article and Find Full Text PDFThe influence of molecular confinement on the melting transition of oriented Na-DNA fibers submerged in poly(ethylene glycol) (PEG) solutions has been studied. The PEG solution exerts an osmotic pressure on the fibers which, in turn, is related to the DNA intermolecular distance. Calorimetry measurements show that the melting temperature increases and the width of the transition decreases with decreasing intermolecular distance.
View Article and Find Full Text PDF