Publications by authors named "N Tepley"

Purpose: This study used magnetoencephalography (MEG) dipole localization and coherence measurement to evaluate the magnetic fields associated with periodic discharges. The primary goal of the study was to evaluate whether MEG could consistently localize quasiperiodic discharges that were observed on the EEG portion of the recording. The secondary objective was to evaluate whether coherence measurements would correlate with topographic maxima of epileptiform activity.

View Article and Find Full Text PDF

Infraslow activity (ISA), direct coupled (DC), and direct current (DC) are the terms used to describe brain activity that occurs in frequencies below 0.1 Hz. Infraslow activity amplitude increase is also associated with epilepsy, traumatic brain injuries, strokes, tumors, and migraines and has been studied since the early 90s at the Henry Ford Hospital MEG Laboratory.

View Article and Find Full Text PDF

Purpose: This study examines whether magnetoencephalographic (MEG) coherence imaging is more sensitive than the standard single equivalent dipole (ECD) model in lateralizing the site of epileptogenicity in patients with drug-resistant temporal lobe epilepsy (TLE).

Methods: An archival review of ECD MEG analyses of 30 presurgical patients with TLE was undertaken with data extracted subsequently for coherence analysis by a blinded reviewer for comparison of accuracy of lateralization. Postoperative outcome was assessed by Engel classification.

View Article and Find Full Text PDF

Study Objective: To study the neurophysiological changes in attention and memory functions in shift work sleep disorder (SWSD), using event-related brain potentials (ERPs).

Participants: 9 healthy night workers (NW) (mean age = 40 y; SD +/- 8.9 y); 8 night workers meeting diagnostic criteria for SWSD (mean age = 37 y +/- 9.

View Article and Find Full Text PDF

The aim of this study was to determine the main cortical regions related to maximal spindle activity of sleep stage 2 in healthy individual subjects during a brief morning nap using magnetoencephalography (MEG). Eight volunteers (mean age: 26.1 +/- 8.

View Article and Find Full Text PDF