This study focuses on fabricating a hybrid structure consisting of ZnO nanorods and ZnTe nanoparticles for NO gas detection, particularly exploring the impact of light irradiation at room temperature (RT). The morphology, physical characteristics, and chemical properties of the ZnO/ZnTe hybrid structure are carefully studied under diverse analytical methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and other measurements. The ZnO/ZnTe composite displayed an improved response toward 500 ppb NO under the blue light radiation effect.
View Article and Find Full Text PDFDipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu ions, where Cu quenches the fluorescence of OFL static quenching.
View Article and Find Full Text PDFTwo-dimensional materials and their combined heterostructures have paved the way for numerous next-generation electronic and optoelectronic applications. Herein, we performed first principles calculations to computationally design the MoSe/WS heterostructure and consider its geometric structure, electronic properties and contact behavior, as well as the effects of the electric fields and strain. Our results show that the MoSe/WS heterostructure is energetically, thermodynamically and mechanically stable.
View Article and Find Full Text PDFEnhancement of the ionic conductivity and reduction of diffusion barriers of lithium-ion batteries are crucial for improving the performance of the fast-growing energy storage devices. Recently, the fast-charging capability of commercial-like lithium-ion anodes with the smallest modification of the current manufacturing technology has been of great interest. We used first principles methods computations with density functional theory and the climbing image-nudged elastic band method to evaluate the impact of an external electric field on the stability, electronic band gap, ionic conductivity, and lithium-ion diffusion coefficient of penta-graphene nanoribbons upon lithium adsorption.
View Article and Find Full Text PDF