Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.
View Article and Find Full Text PDFRationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over-stoichiometric rocksalt (ORX) compounds, characterized by their face-sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over-stoichiometric rocksalt Li-In-Sn-O (o-LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated.
View Article and Find Full Text PDFWith increasing battery demand comes a need for diversified Li sources beyond brines. Among all Li-bearing minerals, spodumene is most often used for its high Li content and natural abundance. However, the traditional approach to process spodumene is costly and energy-intensive, requiring the mineral be transformed from its natural α to β phase at >1000 °C.
View Article and Find Full Text PDFThe success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants.
View Article and Find Full Text PDFMetastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions.
View Article and Find Full Text PDF