Nanomedicine
January 2016
This study investigated the effects of nanoencapsulated curcumin (NEC) and praziquantel (PZQ) treatment on the resolution of periductal fibrosis (PDF) and bile canalicular (BC) abnormalities in Opisthorchis viverrini infected hamsters. Chronic O. viverrini infection (OV) was initially treated with either PZQ (OP) and subsequently treated with NEC (OP+NEC), curcumin (OP+Cur) or unloaded carriers (OP+carrier) daily for one month.
View Article and Find Full Text PDFThe phytochemical curcumin possesses antioxidant activity; however, it becomes unstable after being exposed to light or heat or loses activity during storage. This is especially important when curcumin is applied to the skin within a cosmetic or pharmaceutical formulation, since sun exposure is unavoidable. This drawback can be directly addressed by encapsulation of curcumin in photo-stable nanospheres.
View Article and Find Full Text PDFBackground: Curcumin is known for its anti-inflammatory, antioxidative, and anticarcinogenic properties. However, the strong lipophilic compound is not easily applicable, neither in water, nor directly in o/w formulations. So far, loading of nano or micro scaled carriers has enabled only an uptake up to 30% of curcumin.
View Article and Find Full Text PDFAlthough mucoadhesive drug carriers for the gastro-intestinal tract (GIT) have been reported, the mucoadhesive property and drug release characteristics have never been evaluated separately, whilst the adherence of the carriers to the surface of GIT has not been directly visualized. Here, a monopolymeric carrier made from ethylcellulose (EC) and a dipolymeric carrier made from a blend of methylcellulose (MC) and EC (ECMC) were easily fabricated through a self-assembling process and yielded the highest reported curcumin loading of ~48-49%. Both curcumin loaded ECMC (C-ECMC) and curcumin loaded EC (C-EC) particles showed an in vitro free radical scavenging activity and a dose-dependent in vitro cytotoxic effect towards MCF-7 human breast adenocarcinoma and HepG2 hepatoblastoma cells in tissue culture.
View Article and Find Full Text PDF