Publications by authors named "N Subiros"

The neuroprotective effect of epidermal growth factor (EGF) has been documented in different contexts, but its potential benefits in peripheral neuropathies have been little studied. We investigated the neuroprotective action of EGF in experimental neuropathy induced by acrylamide (ACR). Mice and rats were treated chronically with acrylamide for 6 and 8 weeks, respectively.

View Article and Find Full Text PDF

Background: Combined therapy with epidermal growth factor (EGF) and growth hormone-releasing peptide 6 (GHRP-6) in stroke models has accumulated evidence of neuroprotective effects from several studies, but needs further support before clinical translation. Comparing EGF + GHRP-6 to hypothermia, a gold neuroprotection standard, may contribute to this purpose.

Objectives: The aims of this study were to compare the neuroprotective effects of a combined therapy based on EGF + GHRP-6 with hypothermia in animal models of (a) global ischemia representing myocardial infarction and (b) focal brain ischemia representing ischemic stroke.

View Article and Find Full Text PDF

Background: Stroke continues to be a leading cause of mortality and morbidity worldwide, and novel therapeutic options for ischaemic stroke are urgently needed. In this context, drug combination therapies seem to be a viable approach, which has not been fully explored in preclinical studies.

Objectives: In this work, we assessed the dose-response relationship and therapeutic time window, in global brain ischaemia, of a combined therapeutic approach of recombinant human epidermal growth factor (EGF) and growth hormone-releasing peptide-6 (GHRP-6).

View Article and Find Full Text PDF

Acute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach.

View Article and Find Full Text PDF

Purpose: Multiple sclerosis is a complex and devastating autoimmune disease of the central nervous system. Up to now, a constellation of candidate drugs have been evaluated with no major success. Experimental Autoimmune Encephalitis (EAE) is the animal counterpart that reproduces critical features of the human MS process.

View Article and Find Full Text PDF